Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764737 | PMC |
http://dx.doi.org/10.3389/fmicb.2016.00215 | DOI Listing |
Nat Commun
November 2024
Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.
The integrative multi-kingdom interaction of the gut microbiome in ulcerative colitis (UC) and Crohn's disease (CD) remains underinvestigated. Here, we perform shotgun metagenomic sequencing of feces from patients with UC and CD, and healthy controls in the Japanese 4D cohort, profiling bacterial taxa, gene functions, and antibacterial genes, bacteriophages, and fungi. External metagenomic datasets from the US, Spain, the Netherlands, and China were analyzed to validate our multi-biome findings.
View Article and Find Full Text PDFG3 (Bethesda)
November 2024
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.
Genetics
October 2024
University of Rochester, Department of Biology, Rochester, NY, 14620 USA.
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S.
View Article and Find Full Text PDFPLoS Genet
September 2024
Université de Strasbourg, CNRS, GMGM UMR7156, Strasbourg, France.
Int J Food Microbiol
January 2025
Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain. Electronic address:
Yeast optimisation has been crucial in improving the quality and efficiency of beer production, one of the world's most widely consumed beverages. In this context, rare mating hybridisation is a promising technique for yeast optimization to generate novel and improved non-GMO strains. The limitation of this technique is the lack of knowledge and comparable data on yeast strains hybridisable to Saccharomyces cerevisiae, probably the most important yeast species in beer production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!