TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates.

BMC Evol Biol

The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.

Published: March 2016

Background: The ParaHox genes play an integral role in the anterior-posterior (A-P) patterning of the nervous system and gut of most animals. The ParaHox cluster is an ideal system in which to study the evolution and regulation of developmental genes and gene clusters, as it displays similar regulatory phenomena to its sister cluster, the Hox cluster, but offers a much simpler system with only three genes.

Results: Using Ciona intestinalis transgenics, we isolated a regulatory element upstream of Branchiostoma floridae Gsx that drives expression within the central nervous system of Ciona embryos. The minimal amphioxus enhancer region required to drive CNS expression has been identified, along with surrounding sequence that increases the efficiency of reporter expression throughout the Ciona CNS. TCF/Lef binding sites were identified and mutagenized and found to be required to drive the CNS expression. Also, individual contributions of TCF/Lef sites varied across the regulatory region, revealing a partial division of function across the Bf-Gsx-Up regulatory element. Finally, when all TCF/Lef binding sites are mutated CNS expression is not only abolished, but a latent repressive function is also unmasked.

Conclusions: We have identified a B. floridae Gsx upstream regulatory element that drives CNS expression within transgenic Ciona intestinalis, and have shown that this CNS expression is dependent upon TCF/Lef binding sites. We examine the evolutionary and developmental implications of these results, and discuss the possibility of TCF/Lef not only as a regulator of chordate Gsx, but as a deeply conserved regulatory factor controlling all three ParaHox genes across the Metazoa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776371PMC
http://dx.doi.org/10.1186/s12862-016-0614-3DOI Listing

Publication Analysis

Top Keywords

cns expression
20
nervous system
12
regulatory element
12
tcf/lef binding
12
binding sites
12
central nervous
8
parahox genes
8
ciona intestinalis
8
floridae gsx
8
required drive
8

Similar Publications

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

Gene expression quantitative trait loci are widely used to infer relationships between genes and central nervous system (CNS) phenotypes; however, the effect of brain disease on these inferences is unclear. Using 2,348,438 single-nuclei profiles from 391 disease-case and control brains, we report 13,939 genes whose expression correlated with genetic variation, of which 16.7-40.

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!