A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. | LitMetric

Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses.

Plant Sci

Department of Plant Agriculture, University of Guelph, 50 Stone Rd E., Guelph, ON N1 G 2W1 Canada. Electronic address:

Published: April 2016

In combination with low temperature, controlled atmosphere storage and 1-methylcyclopropene (ethylene antagonist) application are used to delay senescence of many fruits and vegetables. Controlled atmosphere consists of low O2 and elevated CO2. When sub-optimal partial pressures are used, these practices represent multiple abiotic stresses that can promote the development of physiological disorders in pome fruit, including flesh browning and cavities, although there is some evidence for genetic differences in susceptibility. In the absence of surface disorders, fruit with flesh injuries are not easily distinguished from asymptomatic fruit until these are consumed. Oxidative stress metabolites tend to accumulate (e.g., γ-aminobutyrate) or rapidly decline (e.g., ascorbate and glutathione) in vegetative tissues exposed to hypoxic and/or elevated CO2 environments. Moreover, these phenomena can be associated with altered energy and redox status. Biochemical investigations of Arabidopsis and tomato plants with genetically-altered levels of enzymes associated with the γ-aminobutyrate shunt and the ascorbate-glutathione pathway indicate that these metabolic processes are functionally related and critical for dampening the oxidative burst in vegetative and fruit tissues, respectively. Here, we hypothesize that γ-aminobutyrate accumulation, as well energy and antioxidant depletion are associated with the development of physiological injury in pome fruit under multiple environmental stresses. An improved understanding of this relationship could assist in maintaining the quality of stored fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2016.02.005DOI Listing

Publication Analysis

Top Keywords

physiological disorders
8
multiple environmental
8
environmental stresses
8
controlled atmosphere
8
elevated co2
8
development physiological
8
pome fruit
8
fruit
6
oxidative metabolism
4
associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!