In this study, negatively charged catanionic vesicles/hydrophobically modified hydroxyethylcellulose polymers thermo-responsive hydrogels have been fabricated. Vesicular aggregates were found to act as multifunctional junctions for networking of modified-cellulose water solutions. The contributions of the electrostatic and hydrophobic interactions were evaluated by changing either vesicles composition or the polymer hydrophobic substitution. Thermal-induced size and lamellarity of hydrogel-enclosed vesicles were detected, with further polygonal shape changes induced by cellulose-based polymer addition. The thermal transition was also found to tune hydrogel mechanical behaviour. The network formation was further assessed through molecular insights, which allow to determine the arrangement of the polymer chains on the vesicles' surface. The examined systems exhibited interesting thermo-responsive characteristics. Thus, vesicularly cross-linked hydrogels herein presented can offer a wide variety of applications, i.e. in biomedical field, as multi-drug delivery systems, thanks to their ability to provide for different environments to guest molecules, comprising bulk water, vesicles' interior and bilayers, sites on polymeric chains. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1668-1679, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35698 | DOI Listing |
Polymers (Basel)
December 2024
Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.
View Article and Find Full Text PDFCancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Gels
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China.
Poly(N-isopropyl acrylamide) (PNIPAm)-based smart hydrogels are widely employed in emerging applications such as drug delivery and tissue engineering, because their lower critical solution temperature (LCST) is close to physiological conditions. However, the dense chain collapse during the thermo-responsive phase transition restricts water diffusion, resulting in limited volumetric change. Here, a pure PNIPAm hydrogel that achieves a large-scale volume transition by incorporating PNIPAm microgels, is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!