A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. | LitMetric

FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway.

Neurochem Int

Department of Obstetrics and Gynecology, the First Affiliated Hospital, Xian Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.

Published: March 2016

AI Article Synopsis

  • ER stress contributes to neuronal disorders by causing cell injury, partly through mitochondrial dysfunction.
  • FAM3A is shown to play a crucial role in preventing cell death from ER stress in neuronal HT22 cells, with its expression decreasing in response to ER stress triggers like tunicamycin (TM).
  • Overexpression of FAM3A protects against apoptosis and supports mitochondrial function, highlighting its potential as a therapeutic target for ER stress-related neuronal damage by modulating the CHOP-Wnt signaling pathway.

Article Abstract

Endoplasmic reticulum (ER) stress is linked to several neurological disorders, and neuronal injury cascades initiated by excessive ER stress are mediated, in part, via mitochondrial dysfunction. In the present study, we identified FAM3A as an important regulator of ER stress-induced cell death in neuronal HT22 cells. The ER stress inductor tunicamycin (TM) significantly decreased the expression of FAM3A at both mRNA and protein levels, which was shown to be dependent on the induction of reactive oxygen species (ROS). Overexpression of FAM3A attenuated TM-induced apoptosis and activation of ER stress factors, but had no effect on ER calcium metabolism in HT22 cells. We also found decreased mitochondrial ROS generation, inhibited cytochrome c release and preserved mitochondrial membrane potential (MMP) in FAM3A overexpressed cells. In addition, the experiments using isolated mitochondria showed that overexpression of FAM3A attenuated mitochondrial swelling and loss of mitochondrial Ca(2+) buffering capacity after TM exposure. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that FAM3A-induced protection and inhibition of ER stress was mediated by inverting TM-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of FAM3A in protecting against TM-induced cytotoxicity via regulating CHOP-Wnt pathway, and suggests the therapeutic values of FAM3A overexpression against ER stress-associated neuronal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2016.02.010DOI Listing

Publication Analysis

Top Keywords

fam3a
8
mitochondrial dysfunction
8
chop-wnt pathway
8
neuronal injury
8
stress mediated
8
ht22 cells
8
overexpression fam3a
8
fam3a attenuated
8
mitochondrial
6
stress
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!