Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

PLoS One

Viral Pathogenesis Laboratory, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.

Published: August 2016

Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein subcellular localization, consistent with important roles in infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777398PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150477PLOS

Publication Analysis

Top Keywords

nuclear
15
nuclear import
12
nuclear export
12
nuclear trafficking
8
rabies virus
8
nuclear localization
8
localization sequence
8
c-terminal domain
8
nuclear exclusion
8
transport assays
8

Similar Publications

Background And Purpose: We investigated the relationship between serotonergic and dopaminergic specific binding transporter ratios (SBRs) over 4 years in Parkinson's disease (PD) patients. We assessed serotonergic innervation's potential compensatory role for dopaminergic denervation, association with PD symptoms, and involvement in the development of levodopa-induced dyskinesia (LID).

Methods: SBRs of the midbrain and striatum were evaluated from [I-123] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane SPECT images at baseline and after 4 years.

View Article and Find Full Text PDF

Purpose: Synchronous esophageal (EC) and rectal carcinoma (RC) is a rare and challenging condition, particularly in curative-intended treatment. Especially locally advanced tumors may not be suitable for primary resection and require individual multimodal treatment. This review examines curative-intended management of synchronous EC and RC.

View Article and Find Full Text PDF

Objective: Tafamidis has shown potential in slowing disease progression in patients with transthyretin amyloid cardiomyopathy (ATTR-CM). This study aimed to evaluate serial changes on [Tc]Tc-pyrophosphate (PYP) scintigraphy during tafamidis treatment for hereditary ATTR-CM.

Methods: We retrospectively analyzed a prospectively collected cohort of Ala97Ser (A97S) hereditary ATTR-CM patients treated with tafamidis (61 mg/day) and a control group comprising A97S hereditary ATTR-CM patients who had not received disease-modifying medications.

View Article and Find Full Text PDF

Trends in nanobody radiotheranostics.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.

As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis.

View Article and Find Full Text PDF

Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!