Fabrication of polyelectrolyte multilayered nano-capsules using a continuous layer-by-layer approach.

J Colloid Interface Sci

Department of Chemical Engineering and Chemical Technology, Imperial College London, Prince Consort Road, London SW7 2AZ, UK. Electronic address:

Published: May 2016

The layer-by-layer approach is a highly versatile method for the fabrication of multilayered polymeric films and capsules. It has been widely investigated in research for various polyelectrolyte pairs and core template particles. However, the fabrication of nano-sized capsules at the larger scale is difficult and time consuming, due to the necessity of washing and centrifugation steps before the deposition of each polyelectrolyte layer. This results not only in a very long fabrication time, but also in the partial loss of particles during those intermediate steps. In this study, we introduced a continuous approach for the fabrication of multilayer polyelectrolyte based nano-capsules using calcium phosphate core nanoparticles and a tubular flow type reactor with the potential for synthesizing tens of milligrams of capsules per hour. Adsorption of the polyelectrolyte layer occurred in the tubing where particles and polyelectrolyte solution of choice were mixed, creating a layer of polyelectrolyte on the particles. After this, these newly surfaced-modified particles passed into the next segment of tubing, where they were mixed with a second polyelectrolyte of opposite charge. This process can be continuously repeated until the desired number of layers is achieved. One potential problem with this method concerned the presence of any excess polyelectrolyte in the tubing, so careful control of the amount of polymer added was crucial. It was found that slightly under dosing the amount of added polyelectrolyte ensured that negligible unadsorbed polyelectrolyte remained in solution. The particles created at each deposition step were stable, as they all had a zeta potential of greater than ±25mV. Furthermore the zeta potential measurements showed that charge reversal occurred at each stage. Having achieved the necessary number of polyelectrolyte layers, the calcium phosphate cores were easily removed via dissolution in either hydrochloric or acetic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.02.052DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte
11
layer-by-layer approach
8
polyelectrolyte layer
8
calcium phosphate
8
zeta potential
8
particles
6
fabrication
5
fabrication polyelectrolyte
4
polyelectrolyte multilayered
4
multilayered nano-capsules
4

Similar Publications

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

The surfaces of beech wood samples were treated with polyethylenimine (PEI) solutions at three different concentrations-0.5%, 1% and 2%-and two molecular weights-low molecular weight (LMW) and high molecular weight (HMW). The effects of PEI surface treatment of wood were characterized by FT-IR spectroscopy, the penetration depth of PEI (EPI fluorescence spectroscopy), the bonding position of PEI (by SEM), the wetting and surface energy, and the water uptake.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Application of partially zwitterionic poly(ionic liquid)s in humidity sensors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China. Electronic address:

Polyelectrolytes have shown promise as sensitive material for high-performance humidity sensors in recent years. How to obtain fast recovery and high sensitivity polyelectrolyte humidity sensors is a great challenge. A kind of poly(ionic liquid)s (PILs) humidity sensors modified by zwitterionic polymers (partially zwitterionic PILs, named PZPILs) were prepared in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!