Chemically modified trypsin is a standard reagent in proteomics experiments but is usually not considered in database searches. Modification of trypsin is supposed to protect the protease against autolysis and the resulting loss of activity. Here, we show that modified trypsin is still subject to self-digestion, and, as a result, modified trypsin-derived peptides are present in standard digests. We depict that these peptides commonly lead to false-positive assignments even if native trypsin is considered in the database. Moreover, we present an easily implementable method to include modified trypsin in the database search with a minimal increase in search time and search space while efficiently avoiding these false-positive hits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820788PMC
http://dx.doi.org/10.1021/acs.jproteome.5b01105DOI Listing

Publication Analysis

Top Keywords

modified trypsin
12
considered database
8
trypsin
6
cleaning litterbox
4
litterbox proteomic
4
proteomic scientists'
4
scientists' favorite
4
favorite pet
4
pet optimized
4
optimized data
4

Similar Publications

Interaction of starch nanoparticles with digestive enzymes and its effect on the release of polyphenols in simulated gastrointestinal fluids.

Food Chem

January 2025

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Qingdao Special Food Research Institute, Qingdao, 266109, China. Electronic address:

This study investigates the interaction of amino-modified starch nanoparticles (NH-SNPs) and unmodified SNPs with pepsin and trypsin and the influence of the formation of protein coronas on the release of polyphenols. We discovered that NH-SNPs bound loosely to pepsin, while they bound tightly to trypsin, by quartz crystal microbalance with dissipation monitoring and zeta potential measurement. SNPs did not easily bind to the two digestive enzymes.

View Article and Find Full Text PDF

Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides.

Anal Chem

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.

Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions.

View Article and Find Full Text PDF

Effect of trypsin digestion on the integrity and antigenic epitopes of GII.6 norovirus virus-like particles.

Arch Virol

January 2025

Center for Translational Medicine, Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Zhengzhou, 450000, People's Republic of China.

Trypsin digestion of the GII.6 norovirus (NoV) major capsid protein VP1 promotes its binding to histo-blood group antigens (HBGAs), which are believed to be co-receptors for NoVs. In our previous study, we found that trypsin digestion led to the disassembly of GII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!