Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transition metal-free couplings of haloarenes with arenes, triggered by the use of alkali metal alkoxides in the presence of an organic additive, are receiving significant attention in the literature. Most of the known organic additives effect coupling of iodoarenes, but not bromoarenes, to arenes. Recently it was reported that 2-pyridinecarbinol (11) extends the reaction to aryl bromides. This paper investigates the mechanism, and reports evidence for dianions derived from 11 as electron donors to initiate the reaction. It also proposes routes by which electron-poor benzoyl derivatives can be transformed into electron donors to initiate these reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201511847 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!