Different conformations of polypeptides were characterized by measurements of the circular dichroism (CD) extended into the vacuum ultraviolet region. (i) The linear beta-pleated sheet structure was characterized in a broad ultraviolet region down to 165 nm by examination of copolypeptides composed of alternating hydrophobic and hydrophilic amino-acid residues, e.g., poly(Lys-Leu-Lys-Leu). A short-wavelength intense band was found at about 169 nm, which is characteristic of beta-pleated sheet conformation. (ii) The beta-turns were experimentally measured using poly(Ala(2)-Gly(2)) in a broad spectral region down to 165 nm with accuracy. The observed CD spectrum is in excellent qualitative agreement with the theoretical curve calculated by Woody for the beta-turns of type II and/or I of Venkatachalam. The similarity in shape between the theoretical curve and the observed CD spectra suggests a dominance of beta-turn segments in the poly(Ala(2)-Gly(2)) structure. The presence of beta-turns in poly(Ala(2)-Gly(2)) is also in agreement with the characterization of this polypeptide by solid state methods (electron microscopy and x-ray diffraction). The CD spectrum of beta-turns is characterized by a very intense band at 207.5 nm and strong negative bands at 191 and 169 nm. Copolypeptides such as poly(Ala(2)-Gly(3)) and poly(Ala(3)-Gly(3)) yielded a similar type of CD spectrum, analysis of which indicates that a large fraction of their residues is contained in beta-turn regions. (iii) The CD spectrum of the unordered chain of these alternating copolypeptides in salt-free solution is observed in the vacuum ultraviolet region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431499PMC
http://dx.doi.org/10.1073/pnas.74.8.3208DOI Listing

Publication Analysis

Top Keywords

vacuum ultraviolet
12
ultraviolet region
12
circular dichroism
8
beta-pleated sheet
8
region 165
8
intense band
8
theoretical curve
8
identification betabeta-turns
4
betabeta-turns unordered
4
unordered conformations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!