A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. | LitMetric

Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment.

Water Res

Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 5 Bd Descartes, 77454 Marne-la-Vallée, Cedex 2, France. Electronic address:

Published: May 2016

The degradation of 0.20 mM sulfamethazine (SMT) solutions was investigated by heterogeneous electro-Fenton (EF) process using pyrite as source of Fe(2+) (catalyst) and pH regulator in an undivided electrochemical cell equipped either with a Pt or a BDD anode and carbon-felt as cathode. Effect of pyrite concentration and applied current on the oxidative degradation kinetics and mineralization efficiency has been studied. The higher oxidation power of the process, named "Pyrite-EF″ using BDD anode was demonstrated. Pyrite-EF showed a better performance for the oxidation/mineralization of the drug SMT in comparison to the classic EF process: 95% and 87% TOC removal by Pyrite-EF with BDD and Pt anodes, respectively, versus 90% and 83% by classical EF with BDD and Pt anodes, respectively. The rate constant of the oxidation of SMT by OH was determined by the competition kinetics method and found to be 1.87 × 10(9) mol(-1) L s(-1). Based on the identified reaction intermediates by HPLC and GS-MS, as well as released SO4(2-), NH4(+) and NO3(-) ions, a plausible reaction pathway was proposed for the mineralization of SMT during Pyrite-EF process. Toxicity assessment by means of Microtox method revealed the formation of some toxic intermediates during the treatment. However, toxicity of the solution was removed at the end of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2016.02.042DOI Listing

Publication Analysis

Top Keywords

electro-fenton process
8
toxicity assessment
8
bdd anode
8
bdd anodes
8
process
5
pyrite sustainable
4
sustainable catalyst
4
catalyst electro-fenton
4
process improving
4
improving oxidation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!