A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films. | LitMetric

Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films.

Colloids Surf B Biointerfaces

Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.

Published: June 2016

As layer-by-layer self-assembly deposition (LbL) is a versatile technique for surface modification, protein adsorption on the LbL modified glass is evaluated in this study. At the beginning, glass slides was silanized by 3-aminopropyltriethoxysilane (APTES). Sodium alginate (Alg), poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes and chitosan (CS) was used as the polycation electrolyte. Both polyanion and polycation electrolytes alternately deposited on the silanized glass slide surface by the LbL technique to get three different polyanion/chitosan series of LbL films ([Alg/CS], [PGA/CS], and [PAsp/CS]). Three kinds of kinetic model including pseudo-first-order, second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption of albumin on the three different polyanion/chitosan series of LbL films. It is found that the adsorption of albumin on the polyanion/chitosan series of LbL films can be described well with the pseudo-second-order kinetic mechanism. To make sure if the pseudo-second-order kinetic mechanism of protein adsorbed on the other polyanion/polycation LbL films is also suitable, poly(allylamine hydrochloride) (PAH) and poly(L-lysine) (PLL) are used as two other polycations. The [polyanion/PAH] and [polyanion/PLL] series of LbL films were prepared with the same LbL technique for albumin, fibrinogen, and fibronectin adsorption. From the results, it is found that albumin, fibrinogen, and fibronectin adsorption on the various polyanion/polycation LbL films can be described well with the pseudo-second-order kinetic mechanism. The protein adsorbed at equilibrium and rate constant of protein adsorbed on the various LbL films can be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.02.039DOI Listing

Publication Analysis

Top Keywords

lbl films
28
series lbl
16
polyanion/chitosan series
12
adsorption albumin
12
pseudo-second-order kinetic
12
kinetic mechanism
12
protein adsorbed
12
lbl
11
protein adsorption
8
adsorption polyanion/polycation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!