We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777484 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1004776 | DOI Listing |
Nutr Cancer
January 2025
Department of General Surgery, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
Gastric cancer (GC) is a malignant tumor with high morbidity and mortality rates worldwide. This study aimed to investigate the effects and mechanisms of action of didymin, a dietary flavonoid glycoside, on GC treatment. Human GC cell lines Hs-746T and AGS were used to assess the effects of didymin on cell viability, cell proliferation, and cell cycle.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, 48940, Spain.
Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFSci Rep
January 2025
Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany.
We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.
View Article and Find Full Text PDFeNeuro
January 2025
Research School of Psychology, Australian National University, 0200, Australia.
Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!