Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

J Strength Cond Res

1Brumbies Rugby, University of Canberra, Bruce, Australia; 2Centre for Exercise and Sport Science, Deakin University, Burwood, Australia; 3La Trobe Rural Health School, College of Science, Health and Engineering, La Trobe University, Flora Hill Campus, Bendigo, Victoria, Australia; and 4Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia.

Published: November 2016

Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000001396DOI Listing

Publication Analysis

Top Keywords

average acceleration
24
acceleration values
24
measure average
20
values high-speed
16
high-speed running
16
accelerometer
9
validity wearable
8
wearable accelerometer
8
accelerometer device
8
device measure
8

Similar Publications

Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.

View Article and Find Full Text PDF

Randomized Clinical Evaluation of the Healing Activity of Green Propolis Ointment in Individuals with Lower Limb Ulcers Resulting from Leprosy: Preliminary Results of a Pilot Study.

Pharmaceuticals (Basel)

December 2024

Laboratory of Molecular Pharmacology and Bioactive Compounds, Postgraduate Program in Health Sciences, São Francisco University, 215 São Francisco de Assis Avenue, Bragança Paulista 12916-900, São Paulo, Brazil.

Treating chronic wounds incurs substantial costs for Brazil's Unified Health System. Natural compounds, particularly propolis, are increasingly explored as low-cost alternatives due to their healing properties. Brazilian green propolis, distinct in its chemical composition, has garnered scientific interest.

View Article and Find Full Text PDF

Parallel Farby-Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements.

Micromachines (Basel)

November 2024

Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Vector bending sensors can be utilized to detect the bending curvature and direction, which is essential for various applications such as structural health monitoring, mechanical deformation measurement, and shape sensing. In this work, we demonstrate a temperature-insensitive vector bending sensor via parallel Farby-Perot interferometers (FPIs) fabricated by etching and splicing a multicore fiber (MCF). The parallel FPIs made in this simple and effective way exhibit significant interferometric visibility with a fringe contrast over 20 dB in the reflection spectra, which is 6 dB larger than the previous MCF-based FPIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!