Positional Selectivity in C-H Functionalizations of 2-Benzylfurans with Bimetallic Catalysts.

J Am Chem Soc

Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

Published: March 2016

Metal-catalyzed carbon-carbon bond-forming reactions are a mainstay in the synthesis of pharmaceutical agents. A long-standing problem plaguing the field of transition metal catalyzed C-H functionalization chemistry is control of selectivity among inequivalent C-H bonds in organic reactants. Herein we advance an approach to direct site selectivity in the arylation of 2-benzylfurans founded on the idea that modulation of cooperativity in bimetallic catalysts can enable navigation of selectivity. The bimetallic catalysts introduced herein exert a high degree of control, leading to divergent site-selective arylation reactions of both sp(2) and sp(3) C-H bonds of 2-benzylfurans. It is proposed that the selectivity is governed by cation-π interactions, which can be modulated by choice of base and accompanying additives [MN(SiMe3)2, M = K or Li·12-crown-4].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988891PMC
http://dx.doi.org/10.1021/jacs.6b01578DOI Listing

Publication Analysis

Top Keywords

bimetallic catalysts
12
c-h bonds
8
positional selectivity
4
c-h
4
selectivity c-h
4
c-h functionalizations
4
functionalizations 2-benzylfurans
4
2-benzylfurans bimetallic
4
catalysts metal-catalyzed
4
metal-catalyzed carbon-carbon
4

Similar Publications

We report herein two families of porous coordination clusters (PCCs) with 216 nuclearity (M120RE96 or PCC-216MR) and 300 nuclearity (Co144Gd156 or PCC-300CG). For the first family M could be either nickel or cobalt, and RE = Pr, Nd, Sm, Eu, and Gd; while the latter features the highest nuclearity of transition-rare earth metal clusters. Characterized by their cube-like, hollow structures, these clusters exhibit the ability to absorb N2 and CO2.

View Article and Find Full Text PDF

Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis.

View Article and Find Full Text PDF

Depolymerizing plastic waste through hydrogen-based processes, such as hydrogenolysis and hydrocracking, presents a promising solution for converting plastics into liquid fuels. However, conventional hydrogen production methods rely heavily on fossil fuels, exacerbating global warming. This study introduces a novel approach to plastic waste hydrogenolysis that utilizes in situ hydrogen generated via the aqueous phase reforming (APR) of methanol, a biomass-derived chemical offering a more sustainable alternative.

View Article and Find Full Text PDF

PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.

Front Bioeng Biotechnol

January 2025

Department of Experimental Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China.

An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (HO) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation.

View Article and Find Full Text PDF

Atomically precise silver-based bimetallic clusters for electrocatalytic urea synthesis.

Natl Sci Rev

February 2025

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

Electrocatalytic urea synthesis from CO and nitrate holds immense promise as a sustainable strategy, but its complicated synthesis steps and controversial C-N coupling mechanism restrict the design of efficient catalysts. Atomically precise metal cluster materials are ideal model catalysts for investigating the C-N coupling issues. Here we synthesize two atomically precise bimetallic clusters, AgPd(PTFE)(TPP) and AgAu(PTFE)(DPPP), both with icosahedral cores and similar ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!