Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b00355 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!