Phase aberration simulation study of MRgFUS breast treatments.

Med Phys

Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Room 3100, Salt Lake City, Utah 84112.

Published: March 2016

Purpose: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models.

Methods: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element's transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of a dose volume ratio (DVR), a DVR percent change between corrected and uncorrected phases, and an additional metric that measured phase spread.

Results: With phase aberration correction applied, there was an improvement in the focus for all breast anatomies as quantified by a reduction in power required (13%-102%) to reach 20 °C when compared to uncorrected simulations. Also, the DVR percent change increased by 5%-77% in seven out of eight cases, indicating an improvement to the treatment as measured by a reduction in thermal dose deposited to the nontreatment tissues. Breast compositions with a higher degree of heterogeneity along the ultrasound beam path showed greater reductions in thermal dose delivered outside of the treatment volume with correction applied than beam trajectories that propagated through more homogeneous breast compositions. An increasing linear trend was observed between the DVR percent change and the phase-spread metric (R(2) = 0.68).

Conclusions: These results indicate that performing phase aberration correction for breast MRgFUS treatments is beneficial for the small-aperture transducer (14.4 × 9.8 cm) evaluated in this work. While all breast anatomies could benefit from phase aberration correction, greater benefits are observed in more heterogeneous anatomies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769272PMC
http://dx.doi.org/10.1118/1.4941013DOI Listing

Publication Analysis

Top Keywords

phase aberration
28
thermal dose
20
aberration correction
16
phase
13
breast
12
phase correction
12
corrected uncorrected
12
treatment volume
12
dvr percent
12
percent change
12

Similar Publications

Detection of aberrant locomotor activity in a mouse model of lung cancer via home cage monitoring.

Front Oncol

December 2024

Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Lung cancer is the first cause of cancer death in the world, due to a delayed diagnosis and the absence of efficacy therapies. KRAS mutation occurs in 25% of all lung cancers and the concomitant mutations in LKB1 determine aggressive subtypes of these tumors. The improvement of therapeutical options for KRASG12C mutations has increased the possibility of treating these tumors, but resistance to these therapies has emerged.

View Article and Find Full Text PDF

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.

View Article and Find Full Text PDF

Background: For non-small-cell lung cancer (NSCLC) patients who progressed after first-line chemotherapy, immunotherapy targeting programmed cell death (ligand) 1 has shown promising activity. However, the activity is relatively limited in patients harboring epidermal growth factor receptor (EGFR) mutations.

Objectives: This study aimed to evaluate the efficacy and safety of camrelizumab plus famitinib in previously treated patients with locally advanced and metastatic NSCLC.

View Article and Find Full Text PDF

Background: Perianal fistulizing Crohn's disease (PFCD) is a challenging and debilitating phenotype of Crohn's disease that can negatively affect quality of life. Studies have begun to uncover the physiologic mechanisms involved in wound repair as it relates to PFCD and how aberrations in these mechanisms may contribute to fistula persistence.

Aims: To review the physiologic and pathophysiologic mechanisms of wound repair in PFCD and how specific therapeutic strategies may impact their outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!