Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776133 | PMC |
http://dx.doi.org/10.1038/srep22521 | DOI Listing |
Ecol Appl
January 2025
U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA.
Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
January 2025
Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.
Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.
View Article and Find Full Text PDFSoil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!