TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776141 | PMC |
http://dx.doi.org/10.1038/srep22661 | DOI Listing |
Cell Death Dis
August 2017
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France.
Besides its tumor-selective apoptotic activity, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes pro-survival, proliferative or migratory signaling (NF-κB, PI3K/Akt, MAPK and JNK; referred to as 'non-apoptotic' cascades). Indeed, apoptosis and non-apoptotic signaling can be activated in clonal populations of cancer cells in response to treatment and, as a result, only a part of the initial cellular population dies while a fraction survives and develops resistance to TRAIL-induced apoptosis (referred to as 'fractional survival'). Notably, the molecular characterization of the protein platforms streaming into tumoricidal versus tumor-promoting cascades that control fractional survival remained elusive.
View Article and Find Full Text PDFSci Rep
March 2016
Washington University School of Medicine, Department of Surgery, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA.
TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3.
View Article and Find Full Text PDFJ Biol Chem
March 2013
Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
BMC Immunol
July 2012
Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, People's Republic of China.
Background: As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC) and activation of the membrane proximal caspases (caspase-8 or caspase-10) and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity.
Results: In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!