Histone deacetylases (HDACs) are highly expressed in intrahepatic cholangiocarcinoma (ICC) and are associated with poor prognosis of these patients. The aim of the present study was to explore the inhibitory effects of HDAC inhibitors on ICC cells and identify effective and sensitive drugs for ICC. Effects of 34 HDAC inhibitors were screened through two rounds of cell viability assays, and HC toxin, a cyclic tetrapeptide first isolated from the secondary metabolite of Helminthosporium carbonum, exhibited an antitumor activity superior to that of the other HDAC inhibitors and gemcitabine. The mechanisms involved in the inhibitory effects of HC toxin on CCLP-1 cells were investigated by cell counting, colony formation assay, cell morphological observation, real-time PCR, western blotting and flow cytometry. It was demonstrated that HC toxin inhibited the cell proliferation and clone formation ability of the CCLP-1 cells. HC toxin increased the acetyl-histone H4 level and this was associated with the inhibitory effect of HC toxin on the CCLP-1 cells. We also found that HC toxin reduced the level of HDAC1 protein in a post-transcriptional manner. Morphological observation showed multiple morphological changes and indicated the possibility of cell differentiation owing to HC toxin. With increasing concentration of HC toxin, the cell cycle was gradually arrested at the G0/G1 stage and the percentage of apoptotic cells increased which was not mainly through the caspase-3-dependent ways. These results indicated that HC toxin was the most effective among the various HDAC inhibitors with multiple functions in the suppression of ICC in vitro. Thus, HC may be a potential chemotherapeutic for ICC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811396PMC
http://dx.doi.org/10.3892/or.2016.4636DOI Listing

Publication Analysis

Top Keywords

hdac inhibitors
16
cclp-1 cells
12
toxin
10
toxin effective
8
intrahepatic cholangiocarcinoma
8
inhibitory effects
8
effects hdac
8
toxin cclp-1
8
morphological observation
8
cells toxin
8

Similar Publications

Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.

Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.

View Article and Find Full Text PDF

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

An overview of BAP1 biological functions and current therapeutics.

Biochim Biophys Acta Rev Cancer

January 2025

Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA. Electronic address:

BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss of functional variants in BAP1 is associated with a tumor predisposition syndrome with at least four cancers; uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!