A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation. | LitMetric

Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation.

Naunyn Schmiedebergs Arch Pharmacol

Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, 8, University Avenue, 443002, Yichang, Hubei, China.

Published: June 2016

Cervical cancer is the second leading cause of cancer deaths in women worldwide. In recent years, the studies find that inflammation is a critical component of tumor progression, and the ideal therapeutic methods should be aimed at the inflammation reaction triggers. (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside] (RCE-4) was the main active composition of Reineckia carnea (Andr.) Kunth. It significantly induced apoptosis in cervical cancer Caski cells through the mitochondrial pathway in our previous studies; however, its underlying mechanism remains poorly understood. This study aimed to further evaluate the effect of RCE-4 on human cervical cancer HeLa cells. Based on this observation, we investigated the anti-cervical cancer effect of RCE-4 by modulating phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, nuclear factor-kappa B (NF-κB) activation, and inflammation-related key factors in HeLa cells. The results indicated that the HeLa cell was the most sensitive with an IC50 of 7.01 μM; RCE-4 significantly promoted the release of cellular lactate dehydrogenase (LDH); increased DNA fragmentation and apoptosis; reduced PI3K, Akt, mTOR, and NF-κBp65 phosphorylation levels; increased the Bax and cleaved poly (ADP-ribose) polymerase (PARP) protein levels; suppressed Bcl-2 protein expression; elevated the Bax/Bcl-2 expression ratio; and decreased the interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) mRNA expressions in HeLa cells in a concentration-dependent manner. These findings suggest that RCE-4 exerted beneficially anti-cervical cancer effect on HeLa cells, mainly inhibiting PI3K/Akt/mTOR signaling pathway phosphorylation and NF-κB activation, promoting HeLa cell apoptosis. Graphical abstract Anti-tumor effect of RCE-4 on HeLa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-016-1217-7DOI Listing

Publication Analysis

Top Keywords

hela cells
24
cervical cancer
16
cancer hela
12
pi3k/akt/mtor signaling
12
signaling pathway
12
nf-κb activation
12
reineckia carnea
8
human cervical
8
hela
8
cells inhibiting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!