Gold nanorods have attracted intensive interest owing to their localized surface plasmon resonance properties and enormous potential applications. The transverse plasmon of Au nanorods is usually weaker than the longitudinal one, hampering certain plasmonic applications. Herein we report on the intensification of the transverse plasmon resonance by coating TiO2 onto Au nanorods. The transverse plasmon mode of the resultant Au@TiO2 nanorods with a sufficiently thick shell can be comparable to or even stronger than the longitudinal one in intensity. Moreover, both the transverse and longitudinal plasmon resonances of the Au@TiO2 nanorods exhibit an asymmetric line shape on their scattering spectra. Electrodynamic simulations and analyses based on a coupled oscillator model suggest that the asymmetric line shape originates from the coupling between the Au core and TiO2 shell. Apart from the shell thickness, the plasmonic properties of the Au@TiO2 nanorods can also be tuned by the dimension of the Au nanorod core. In addition, the polarization-dependent light scattering from the individual Au@TiO2 nanorods has also been investigated. These results will be of high importance for understanding the interactions between noble metals and semiconductors in plasmonic hybrid nanosystems, and for designing novel plasmonic nanostructures with desired optical properties and functions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr08521gDOI Listing

Publication Analysis

Top Keywords

transverse plasmon
16
au@tio2 nanorods
16
plasmon resonance
12
nanorods
8
asymmetric shape
8
plasmon
6
transverse
5
highly enhanced
4
enhanced transverse
4
resonance tunable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!