Background Image-guided adaptive proton therapy (IGAPT) can potentially be applied to take into account interfraction motion while limiting organ at risk (OAR) dose in cervical cancer radiation therapy (RT). In this study, the potential dosimetric advantages of IGAPT compared with photon-based image-guided adaptive RT (IGART) were investigated. Material and methods For 13 cervical cancer patients, full and empty bladder planning computed tomography (CT) images and weekly CTs were acquired. Based on both primary clinical target volumes (pCTVs) [i.e. gross tumor volume (GTV), cervix, corpus-uterus and upper part of the vagina] on planning CTs, the pretreatment observed full range primary internal target volume (pITV) was interpolated to derive pITV subranges. Given corresponding ITVs (i.e. pITVs including lymph nodes), patient-specific photon and proton plan libraries were generated. Using all weekly CTs, IGART and IGAPT treatments were simulated by selecting library plans and recalculating the dose. For each recalculated IGART and IGAPT fraction, CTV (i.e. pCTV including lymph nodes) coverage was assessed and differences in fractionated substitutes of dose-volume histogram (DVH) parameters (V15Gy, V30Gy, V45Gy, Dmean, D2cc) for bladder, bowel and rectum were tested for significance (Wilcoxon signed-rank test). Also, differences in toxicity-related DVH parameters (rectum V30Gy, bowel V45Gy) were approximated based on accumulated dose distributions. Results In 92% (96%) of all recalculated IGAPT (IGART) fractions adequate CTV coverage (V95% >98%) was obtained. All dose parameters for bladder, bowel and rectum, except the fractionated substitute for rectum V45Gy, were improved using IGAPT. Also, IGAPT reduced the mean dose to bowel, bladder and rectum significantly (p < 0.01). In addition, an average decrease of rectum V30Gy and bowel V45Gy indicated reductions in toxicity probabilities when using IGAPT. Conclusion This study demonstrates the feasibility of IGAPT in cervical cancer using a plan-library based plan-of-the-day approach. Compared to photon-based IGART, IGAPT maintains target coverage while significant dose reductions for the bladder, bowel and rectum can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0284186X.2016.1139179DOI Listing

Publication Analysis

Top Keywords

cervical cancer
12
dosimetric advantages
8
proton therapy
8
image-guided adaptive
8
weekly cts
8
including lymph
8
lymph nodes
8
igart igapt
8
dvh parameters
8
bladder bowel
8

Similar Publications

Background: Cervical cancer is the most prevalent cancer in Mozambique, with endocervical adenocarcinoma accounting for approximately 5.5% of cases. Knowledge regarding the most prevalent HPV genotypes in endocervical adenocarcinoma is limited, within this setting.

View Article and Find Full Text PDF

Background: In 2018, the International Federation of Gynecology and Obstetrics (FIGO) revised its cervical cancer staging system to enhance clinical relevance, notably by categorizing lymph node metastases (LNM) as an independent stage IIIC. This multicenter study evaluates the prognostic implications of the FIGO 2018 classification within a Japanese cohort.

Methods: This study included 1468 patients with cervical cancer.

View Article and Find Full Text PDF

In recent years, circRNAs have garnered increasing attention for their role in cervical cancer. However, the functions of many newly identified circRNAs remain unclear and require further exploration. In this study, we investigated the expression and oncogenic potential of the novel circRNA circSTX6 in cervical cancer.

View Article and Find Full Text PDF

Objective: To report on complications of conisation and its effects on fertility and stenosis.

Design: Register based nationwide cohort study on routinely collected data using several linked databases.

Setting: Primary and secondary care in Denmark, 2006-18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!