The dual-hit hypothesis of neurodegeneration states that severe stress sensitizes vulnerable cells to subsequent challenges so that the two hits are synergistic in their toxic effects. Although the hippocampus is vulnerable to a number of neurodegenerative disorders, there are no models of synergistic cell death in hippocampal neurons in response to combined proteotoxic and oxidative stressors, the two major characteristics of these diseases. Therefore, a relatively high-throughput dual-hit model of stress synergy was developed in primary hippocampal neurons. In order to increase the rigor of the study and strengthen the interpretations, three independent, unbiased viability assays were employed at multiple timepoints. Stress synergy was elicited when hippocampal neurons were treated with the proteasome inhibitor MG132 followed by exposure to the oxidative toxicant paraquat, but only after 48 h. MG132 and paraquat only elicited additive effects 24 h after the final hit and even loss of heat shock protein 70 activity and glutathione did not promote stress synergy at this early timepoint. Dual hits of MG132 elicited modest glutathione loss and slightly synergistic toxic effects 48 h after the second hit, but only at some concentrations and only according to two viability assays (metabolic fitness and cytoskeletal integrity). The thiol N-acetyl cysteine protected hippocampal neurons against dual MG132/MG132 hits but not dual MG132/paraquat hits. These findings support the view that proteotoxic and oxidative stress propel and propagate each other in hippocampal neurons, leading to synergistically toxic effects, but not as the default response and only after a delay. The neuronal stress synergy observed here lies in contrast to astrocytic responses to dual hits, because astrocytes that survive severe proteotoxic stress resist additional cell loss following second hits. In conclusion, a new model of hippocampal vulnerability was developed for the testing of therapies, because neuroprotective treatments that are effective against severe, synergistic stress are more likely to succeed in the clinic. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949116PMC
http://dx.doi.org/10.1002/hipo.22580DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
24
stress synergy
16
toxic effects
12
synergistic stress
8
dual-hit hypothesis
8
hypothesis neurodegeneration
8
stress
8
synergistic toxic
8
proteotoxic oxidative
8
viability assays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!