Motor control is a challenging task for the central nervous system, since it involves redundant degrees of freedom, nonlinear dynamics of actuators and limbs, as well as noise. When an action is carried out, which factors does your nervous system consider to determine the appropriate set of muscle forces between redundant degrees-of-freedom? Important factors determining motor output likely encompass effort and the resulting motor noise. However, the tasks used in many previous motor control studies could not identify these two factors uniquely, as signal-dependent noise monotonically increases as a function of the effort. To address this, a recent paper introduced a force control paradigm involving one finger in each hand that can disambiguate these two factors. It showed that the central nervous system considers both force noise and amplitude, with a larger weight on the absolute force and lower weights on both noise and normalized force. While these results are valid for the relatively low force range considered in that paper, the magnitude of the force shared between the fingers for large forces is not known. This paper investigates this question experimentally, and develops an appropriate Markov chain Monte Carlo method in order to estimate the weightings given to these factors. Our results demonstrate that the force sharing strongly depends on the force level required, so that for higher force levels the normalized force is considered as much as the absolute force, whereas the role of noise minimization becomes negligible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774921 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149512 | PLOS |
Metab Brain Dis
January 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.
Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!