CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs.

Oncotarget

Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.

Published: April 2016

Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951330PMC
http://dx.doi.org/10.18632/oncotarget.7711DOI Listing

Publication Analysis

Top Keywords

breast carcinogenesis
12
breast cancer
12
metabolic syndrome
8
cancer cells
8
ctbp1
7
breast
7
ctbp1 associates
4
associates metabolic
4
syndrome breast
4
carcinogenesis targeting
4

Similar Publications

Mechanisms of Regulation of Cell Fate in Breast Development and Cancer.

Adv Exp Med Biol

January 2025

Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.

This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate.

View Article and Find Full Text PDF

Cells-of-Origin of Breast Cancer and Intertumoral Heterogeneity.

Adv Exp Med Biol

January 2025

Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Wurundjeri Country, Melbourne, Australia.

Both intrinsic and extrinsic mechanisms underpin the profound intertumoral heterogeneity in breast cancer. Increasing evidence suggests that the intrinsic characteristics of breast epithelial precursor cells may influence tumour phenotype. These "cells-of-origin" of cancer preside in normal breast tissue and are uniquely susceptible to mutagenesis upon exposure to distinct oncogenic stimuli.

View Article and Find Full Text PDF

USP35 promotes the growth of ER positive breast cancer by inhibiting ferroptosis via BRD4-SLC7A11 axis.

Commun Biol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.

Anti-estrogen endocrine therapies greatly improve survival of estrogen receptor positive (ER + ) breast cancer. Unfortunately, about 30% of patients do not respond to endocrine therapies initially. We previously showed that deubiquitinase USP35 and ERα act in a positive feedback loop to promote the carcinogenesis of ER+ breast cancer although it is unclear whether USP35 regulates cell death in ER+ breast cancer.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which (PSD) inhibits invasion and metastasis of triple-negative breast cancer (TNBC).

Methods: The public databases were used to identify the potential targets of PSD and the invasion and metastasis targets of TNBC to obtain the intersection targets between PSD and TNBC. The "PSD-target-disease" interaction network was constructed and protein-protein interaction (PPI) analysis was performed to obtain the core targets, which were analyzed for KEGG pathway and GO functional enrichment.

View Article and Find Full Text PDF

With breast cancer being the most common tumor among women in the world today, it is also the leading cause of cancer-related deaths. Standard treatments include chemotherapy, surgery, endocrine therapy, and targeted therapy. However, the heterogeneity, drug resistance, and poor prognosis of breast cancer highlight an urgent need for further exploration of its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!