The conversion of the β-amyloid (Aβ) peptide into pathogenic aggregates is linked to the onset and progression of Alzheimer's disease. Although this observation has prompted an extensive search for therapeutic agents to modulate the concentration of Aβ or inhibit its aggregation, all clinical trials with these objectives have so far failed, at least in part because of a lack of understanding of the molecular mechanisms underlying the process of aggregation and its inhibition. To address this problem, we describe a chemical kinetics approach for rational drug discovery, in which the effects of small molecules on the rates of specific microscopic steps in the self-assembly of Aβ42, the most aggregation-prone variant of Aβ, are analyzed quantitatively. By applying this approach, we report that bexarotene, an anticancer drug approved by the U.S. Food and Drug Administration, selectively targets the primary nucleation step in Aβ42 aggregation, delays the formation of toxic species in neuroblastoma cells, and completely suppresses Aβ42 deposition and its consequences in a Caenorhabditis elegans model of Aβ42-mediated toxicity. These results suggest that the prevention of the primary nucleation of Aβ42 by compounds such as bexarotene could potentially reduce the risk of onset of Alzheimer's disease and, more generally, that our strategy provides a general framework for the rational identification of a range of candidate drugs directed against neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758743PMC
http://dx.doi.org/10.1126/sciadv.1501244DOI Listing

Publication Analysis

Top Keywords

primary nucleation
12
alzheimer's disease
12
anticancer drug
8
aggregates linked
8
aβ42
5
drug suppresses
4
suppresses primary
4
nucleation reaction
4
reaction initiates
4
initiates production
4

Similar Publications

Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.

Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.

View Article and Find Full Text PDF

Stretchable Primary-Blue Color-Conversion Layer: Crystallization of Phase-Engineered Perovskite Nanocrystals in an Organic Matrix.

ACS Nano

January 2025

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.

View Article and Find Full Text PDF

Phase separation plays a crucial role in many natural and industrial processes, such as the formation of clouds and minerals and the distillation of crude oil. In metals and alloys, phase separation is an important approach often utilized to improve their mechanical strength for use in construction, automobile, and aerospace manufacturing. Despite its importance in many processes, the atomic details of phase separation are largely unknown.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Rethinking primary particulate matter: Integrating filterable and condensable particulate matter in measurement and analysis.

Sci Total Environ

January 2025

Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea. Electronic address:

The current definition of primary particulate matter (PM) encompasses filterable PM (FPM) and condensable PM (CPM), which are evaluated using two distinct conventional measurement methods: cooling and dilution. While the cooling method exclusively considers the homogenous formation of CPM, the dilution method, closer to real-world conditions, neglects FPM characterization. To overcome this limitation, we propose a doubled-dilution system that enables the parallel characterization of both FPM and primary PM without diverting FPM from the CPM formation pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!