Motor ability of forelimb both on- and off-riding during walk and trot cadence of horse.

J Exerc Rehabil

Department of Physical Education, Faculty of Exercise and Sports Science, College of Natural Science, Jeju National University, Jeju, Korea.

Published: February 2016

The aim of this study was to investigate the motor ability of forelimb according to on- or off-riding during cadences (walk and trot) of horse. Horses and rider selected as subject consisted of total 37 heads of Jeju native horse and 1 female rider. The variables analyzed composed of 1 stride length, 1 step length, elapsed time of stance, elapsed time of swing, elapsed time of 1 step, and forward velocity (x-axis). Two-way analysis of variance of variables was employed for the statistical analysis with the level of significance set at 5% (P<0.05). Trot cadence showed significant difference with the faster and shorter during trot than that of walk in velocity and elapsed time. When analyzed interaction effect in stance and swing phase, the locomotion showed the shorter elapsed time in trot than that of walk, but more delayed in case of on-riding during stance phase, whereas the case of on-riding showed with the shorter during swing phase than that of the case of off-riding These result of horse's analysis meant that there was very close relation among variables of rider's weight-velocity-stride length-stride elapsed time. Next study will be necessary to analyze cadence variables added both stride length and rider's weight for riding activity and rehabilitation during horse riding using Jeju native horse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771155PMC
http://dx.doi.org/10.12965/jer.160278DOI Listing

Publication Analysis

Top Keywords

elapsed time
12
motor ability
8
ability forelimb
8
forelimb on-
8
on- off-riding
8
walk trot
8
off-riding walk
4
trot cadence
4
cadence horse
4
horse aim
4

Similar Publications

An Evaluation of the Effects of Delayed Parasitism on Daily and Lifetime Fecundity of Haliday.

Insects

December 2024

Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali (DAFE), Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.

The study of parasitoid reproductive behaviour is crucial to understanding how parasitoids influence host population dynamics, and the strategies used by parasitoids to maximize their reproductive success. Studying how the parasitoid optimizes its reproductive resources is important as it provides information to improve the efficiency of a biological control programme. Many studies have been carried out on to assess the foraging behaviour of the parasitoid, but how the age of the parasitoid affects its foraging behaviour is still poorly understood.

View Article and Find Full Text PDF

Background: Botulinum toxin is an attenuated neurotoxin of Clostridium Botulinum gram positive bacterial, which is used in medication sialorrhea, cervical dystonia, hyperhidrosis and non-surgical cosmetic operation (aesthetic) such as facial wrinkles and reduced the bulky appearance hypertrophied of masseter muscle. This study was designed to revealed the effect of zygomiticus inoculation of botulinum toxin B in zygomatic muscle of rats on zygomatic bone.

Methods: A total of 25 male albino rats (200-260 gm) were injected facial intramuscular by a single dose of 2.

View Article and Find Full Text PDF

COVID-19 disease, caused by the SARS-CoV-2 virus, has significantly altered modern society and lifestyles. We investigated its impact on brain glucose metabolism by meta-analyzing existing studies that utilized 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans of the brain. We conducted a systematic search of MEDLINE and EMBASE databases from inception to August 2024 for English-language publications using the keywords "positron emission tomography", and "COVID-19".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!