Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications.
Significance: In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs), followed by the differentiation of these cells toward a retinal lineage, including photoreceptors, retinal ganglion cells, and retinal pigment epithelium, has been demonstrated. The use of mRNA reprogramming to yield pluripotency represents a unique ability to derive pluripotent stem cells without the use of DNA vectors, ensuring the lack of genomic integration and constitutive expression. The studies reported in the present article serve to establish a more reproducible system with which to derive retinal cell types from hiPSCs through the prevention of genomic integration of delivered genes and should also eliminate the risk of constitutive expression of these genes. Such ability has important implications for the study of, and development of potential treatments for, retinal degenerative disorders and the development of novel therapeutic approaches to the treatment of these diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798730 | PMC |
http://dx.doi.org/10.5966/sctm.2015-0093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!