Several epidemiological studies have associated PM2.5 (particulate matter, aerodynamic diameter 2.5 µm) exposure with an increase in morbidity and mortality attributed to cardiopulmonary diseases. Based upon these observations and the growing effort to replace the use of animals in research, in vitro A549 cells cultured in three dimensions (3D), an alternative method to the use of animals, as well as monolayers were investigated to examine whether organic PM2.5 extract induced equivalent cytotoxic changes in vitro as compared to in vivo. PM2.5 was collected on Brazil Avenue, Rio de Janeiro, Brazil, from November 2010 to May 2011, except March, and analyzed for the ability to induce cytotoxicity in A549 cells using various established assays. Samples collected in all months significantly decreased viability of A549 cells using both types of cell death assays, and those collected in November showed lower cytotoxicity. It is worthwhile noting that for samples collected in all months except for April, PM2.5 induced greater toxicity in cells grown in monolayers than in 3D. Data demonstrated that cell behavior varied based upon type of culture system employed. Since the 3D cell culture mimics the architecture of in vivo tissue to a greater extent than monolayers, it is suggested that data from 3D studies resemble more closely human exposure conditions and thus may provide more reliable findings to be utilized in risk assessment following PM exposure than results obtained in traditional culture system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287394.2016.1143902 | DOI Listing |
Cell Death Discov
January 2025
Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
Introduction: This study investigated the tryptic hydrolysis of β-lactoglobulin (BLG) for 30, 60, 90, and 120 min at 1/200 E/S (enzyme/substrate ratio, w/w) to prepare potentially anticarcinogenic peptides.
Methods: The properties of hydrolysates were characterized, including degree of hydrolysis, free amino acids, SDS-PAGE, FTIR, and antioxidant activity employing DPPH-assay, β-carotene/linoleic acid, and FRAP assay.
Results: BLG tryptic hydrolysate produced after 60 min hydrolysis recorded the highest antioxidant activity, and LCMS analysis revealed 162 peptides of molecular masses ranging from 800 to 5671Da, most of them are of hydrophobic nature.
ACS Omega
January 2025
Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
Our phytochemical investigation of the roots of led to the isolation of two new lanostane triterpenes, 3-acetylpolycarpol () and 15-acetylpolycarpol (), as well as 15 known compounds (-). The structures of the isolated compounds were elucidated by an analysis of spectroscopic data. Compounds - were tested against nonsmall cell lung cancer cells (A549) and human cervical carcinoma cells (HeLa) using an MTT assay.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Mechanical Engineering, Yeungnam University Gyeongsan-si 38451 Gyeongbuk Republic of Korea
In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!