Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer.

Clin Transl Med

NHMRC Centre of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS-1, 17 Liverpool Street Private Bag-23, Hobart, 7000, TAS, Australia.

Published: December 2014

Unfortunately, the research effort directed into chronic obstructive pulmonary disease (COPD) has been disproportionately weak compared to its social importance, and indeed it is the least researched of all common chronic conditions. Tobacco smoking is the major etiological factor. Only 25% of smokers will develop "classic" COPD; in these vulnerable individuals the progression of airways disease to symptomatic COPD occurs over two or more decades. We know surprisingly little about the pathobiology of COPD airway disease, though small airway fibrosis and obliteration are likely to be the main contributors to physiological airway dysfunction and these features occur earlier than any subsequent development of emphysema. One potential mechanism contributing to small airway fibrosis/obliteration and change in extracellular matrix (ECM) is epithelial mesenchymal transition (EMT), so called Type-II EMT. When associated with angiogenesis (Type-III EMT) it may well also be a link with the development of lung (airway) cancer which is closely associated with COPD. Active EMT in COPD may help to explain why lung cancer is so common in smokers and also the core pathophysiology of small airway fibrosis. Better understanding may lead to new markers for incipient neoplasia, and better preventive management of patients. There is serious need to understand key components of airway EMT in smokers and COPD, and to demarcate novel drug targets for the prevention of lung cancer and airway fibrosis, as well as better secondary management of COPD. Since over 90% of human cancer arises in epithelia and the involvement of EMT in all of these may be a central paradigm, insights gained in COPD may have important generalizable value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607924PMC
http://dx.doi.org/10.1186/s40169-014-0033-2DOI Listing

Publication Analysis

Top Keywords

airway fibrosis
16
lung cancer
12
small airway
12
copd
10
airway
9
epithelial mesenchymal
8
mesenchymal transition
8
transition emt
8
chronic obstructive
8
obstructive pulmonary
8

Similar Publications

Pf bacteriophages, lysogenic viruses that infect are implicated in the pathogenesis of chronic infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new infections.

View Article and Find Full Text PDF

Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation.

View Article and Find Full Text PDF

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.

View Article and Find Full Text PDF

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!