A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Issues in performance evaluation for host-pathogen protein interaction prediction. | LitMetric

Issues in performance evaluation for host-pathogen protein interaction prediction.

J Bioinform Comput Biol

1 Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.

Published: June 2016

The study of interactions between host and pathogen proteins is important for understanding the underlying mechanisms of infectious diseases and for developing novel therapeutic solutions. Wet-lab techniques for detecting protein-protein interactions (PPIs) can benefit from computational predictions. Machine learning is one of the computational approaches that can assist biologists by predicting promising PPIs. A number of machine learning based methods for predicting host-pathogen interactions (HPI) have been proposed in the literature. The techniques used for assessing the accuracy of such predictors are of critical importance in this domain. In this paper, we question the effectiveness of K-fold cross-validation for estimating the generalization ability of HPI prediction for proteins with no known interactions. K-fold cross-validation does not model this scenario, and we demonstrate a sizable difference between its performance and the performance of an alternative evaluation scheme called leave one pathogen protein out (LOPO) cross-validation. LOPO is more effective in modeling the real world use of HPI predictors, specifically for cases in which no information about the interacting partners of a pathogen protein is available during training. We also point out that currently used metrics such as areas under the precision-recall or receiver operating characteristic curves are not intuitive to biologists and propose simpler and more directly interpretable metrics for this purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720016500116DOI Listing

Publication Analysis

Top Keywords

machine learning
8
k-fold cross-validation
8
pathogen protein
8
issues performance
4
performance evaluation
4
evaluation host-pathogen
4
host-pathogen protein
4
protein interaction
4
interaction prediction
4
prediction study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!