Metabolomics reveals the physiological response of Pseudomonas putida KT2440 (UWC1) after pharmaceutical exposure.

Mol Biosyst

School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7ND, UK.

Published: April 2016

Human pharmaceuticals have been detected in wastewater treatment plants, rivers, and estuaries throughout Europe and the United States. It is widely acknowledged that there is insufficient information available to determine whether prolonged exposure to low levels of these substances is having an impact on the microbial ecology in such environments. In this study we attempt to measure the effects of exposing cultures of Pseudomonas putida KT2440 (UWC1) to six pharmaceuticals by looking at differences in metabolite levels. Initially, we used Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate analysis to discriminate between cell cultures exposed to different pharmaceuticals. This suggested that on exposure to propranolol there were significant changes in the lipid complement of P. putida. Metabolic profiling with gas chromatography-mass spectrometry (GC-MS), coupled with univariate statistical analyses, was used to identify endogenous metabolites contributing to discrimination between cells exposed to the six drugs. This approach suggested that the energy reserves of exposed cells were being expended and was particularly evident on exposure to propranolol. Adenosine triphosphate (ATP) concentrations were raised in P. putida exposed to propranolol. Increased energy requirements may be due to energy dependent efflux pumps being used to remove propranolol from the cell.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5mb00889aDOI Listing

Publication Analysis

Top Keywords

pseudomonas putida
8
putida kt2440
8
kt2440 uwc1
8
exposure propranolol
8
metabolomics reveals
4
reveals physiological
4
physiological response
4
response pseudomonas
4
putida
4
uwc1 pharmaceutical
4

Similar Publications

Creating a multifunctional degrader for co-mineralization of p-nitrophenol and 1,2-dichloroethane and its application in wastewater bioremediation.

J Hazard Mater

January 2025

Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

Because the interactions among contaminants may lead to enhanced toxicity, combined pollution caused by the co-presence of multiple contaminants has increasingly gained public concern. p-Nitrophenol (PNP) and 1,2-dichloroethane (1,2-DCA) are frequently co-detected in groundwater. To completely eliminate PNP, 1,2-DCA and intermediates from polluted sites, in this study, a novel degrader KTU-PDG was created by functional assembly of PNP and 1,2-DCA biodegradation pathways in a robust chassis Pseudomonas putida KT2440.

View Article and Find Full Text PDF

is a rod-shaped, flagellated, non-lactose fermenting, gram negative bacterium, usually found in water and soil habitats. generally causes nosocomial infections in immunocompromised patients. Increased infection rates are seen in those patients with medical devices inserted, due to this organism's innate ability to attach to moist and inanimate objects.

View Article and Find Full Text PDF

The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative U.

Polymers (Basel)

January 2025

Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.

Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!