Background: The study of changes in a host's energy allocation in response to parasites is crucial for understanding parasite impact on both individual- and population-level processes. Experimental studies have explored such responses mainly in a single subsample of hosts per study, primarily adult males, and have only assessed either the overall energy acquisition or expenditure, rather than their different components simultaneously, or the behavioral responses. Accordingly, two fundamental questions arise: why have multiple host strategies evolved to cope with increased energy expenditure? and, which factors determine this variation (e.g. host species, identity, age)? This study provides an important step towards addressing both questions by experimentally disentangling the short-term physiological and behavioral responses of juvenile and non-reproductive adult rodents to natural levels of flea infestation. These two cohorts represent extreme cases of the energy demand continuum, as the former, in contrast to the latter, is involved in growth--a highly energy-demanding process--and may not be able to operate far below its upper limit of energy expenditure, and thus should reduce its energy expenses upon the occurrence of extra demands (e.g. due to parasitic pressure). Accordingly, we hypothesized that the response to fleas is age-dependent and varies according to the age-specific energy requirements and constraints.
Methods: We monitored the behavior and physiology of juvenile and non-reproductive adult rodents before and after experimental flea infestation. First, we used a model selection approach to search for the factors that best explained the variability in the time budget, oxygen consumption, and body mass change in response to fleas. Then, using a path analysis approach, we quantified the different pathways connecting the important associations revealed at stage 1.
Results: Compared to their flea-free counterparts, flea-infested adults groomed longer and had a higher oxygen consumption rate, but did not lose body mass. Infested juveniles also groomed longer but grew slower and had a similar rate of oxygen consumption.
Conclusions: Results suggest that both juvenile and adult rodents suffer from natural flea infestation levels. However, the comparison between the responses of juveniles and adults to experimental infestation, also suggests that juveniles may reallocate their energy expenditure from growth to maintenance, while non-reproductive adults increase their energy acquisition. Such age-dependent responses suggest that juveniles may be constrained by their higher need to rest for full functioning or by an upper limit in energy expenditure. Taken together, our study provides experimental evidence that hosts can compensate for the costs incurred by parasitism through physiological and behavioral plasticity, depending on their age, which probably determines their requirements and constraints. These compensatory responses may have important implications for the population dynamics of hosts and their parasites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774152 | PMC |
http://dx.doi.org/10.1186/s13071-016-1407-7 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Sports Arts, Hebei Sport University, Shijiazhuang, Hebei, China.
A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).
View Article and Find Full Text PDFExp Physiol
January 2025
Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
High cardiac sympathetic drive and release of the sympathetic cotransmitter neuropeptide Y (NPY) are significant features of congestive heart failure (CHF), in which resting venous NPY levels are known to be associated with mortality. However, whether circulating NPY levels increase during exercise in CHF when they are already elevated is controversial. We sought to establish the dynamics of circulating NPY levels in CHF patients treated with contemporary medical therapy and devices in relationship to indices of performance linked to long-term prognosis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
Objectives: The present study describes the comparative effect of 24-week supplementation of beeswax alcohol (BWA, Raydel, 0.5% and 1.0%, wt/wt) and coenzyme Q (CoQ, 0.
View Article and Find Full Text PDFJ Clin Med
January 2025
School of Medicine, University of Liverpool, Liverpool L69 3GE, UK.
Heart Failure (HF) is a prevalent condition which places a substantial burden on healthcare systems worldwide. Medical management implemented with exercise training (ET) plays a role in prognostic and functional capacity improvement. The aim of this review is to determine the effect of exercise training (ET) on HFpEF and HFrEF patients as well as exercise modality recommendations in frail and sarcopenic subpopulations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!