An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H(+), H2(+), and H3(+). For all experimental conditions, the fraction of H2 (+) ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H(+) and H3(+) depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H(+) fraction in ion beam. The maximum fraction of H(+) reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H3(+) fraction in the beam. At optimum parameters, the fraction of H3(+) ions reached 60% of the total ion beam current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4931800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!