The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6346-5DOI Listing

Publication Analysis

Top Keywords

hg0 concentrations
16
air-sea exchange
8
exchange gaseous
8
gaseous mercury
8
tropical coast
8
coast luhuitou
8
luhuitou fringing
8
fringing reef
8
reef south
8
south china
8

Similar Publications

Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.

View Article and Find Full Text PDF

Novel Insights into Hg Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China.

Rice leaves can assimilate atmospheric mercury (Hg), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg.

View Article and Find Full Text PDF

Quantifying Altitudinal Mercury Accumulation in Biomonitors along Himalayan Valleys Using Mercury Isotopes.

Environ Sci Technol

December 2024

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.

Article Synopsis
  • The Himalayan valleys serve as key pathways for transporting atmospheric pollutants, including mercury (Hg), from South Asia to the Tibetan Plateau.
  • This study uses biomonitors like tree foliage, bark, mosses, and lichens to analyze the sources and buildup of mercury in these regions.
  • Findings indicate variations in mercury concentrations and isotopic compositions among the biomonitors, with most Hg stemming from atmospheric sources linked to human activities in South Asia.
View Article and Find Full Text PDF

Promoting elemental mercury immobilization performance from smelting flue gas over a wide temperature range via cobalt-doped copper sulfide adsorbents.

Sci Total Environ

December 2024

Jiangxi Province Key Laboratory of Green and Low Carbon Metallurgy for Strategic Nonferrous Metals, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Metallurgical Engineering, JiangXi University of Science and Technology, Ganzhou 341000, China. Electronic address:

Copper sulfide (CuS) sorbent exhibits great potential for gaseous elemental mercury (Hg) decontamination, but it still suffers from a narrow operating temperature. Therefore, designing advanced CuS sorbents that have a high activity level for capturing Hg and thermal stability at a high temperature range is challenging. Herein, we propose a metal doping strategy to fabricate a bimetallic sulfide adsorbent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!