Transforming growth factor-β activated kinase 1 (TAK1) has been shown to play a crucial role in cell death, differentiation, and inflammation. Here, we live-imaged robust TAK1 activation in Lewis lung carcinoma 3LL cells implanted into the s.c. tissue of syngeneic C57BL/6 mice and treated with polyinosinic:polycytidylic acid (PolyI:C). First, we developed and characterized a Förster resonance energy transfer-based biosensor for TAK1 activity. The TAK1 biosensor, named Eevee-TAK1, responded to stress-inducing reagents such as anisomycin, tumor necrosis factor-α, and interleukin1-β. The anisomycin-induced increase in Förster resonance energy transfer was abolished by the TAK1 inhibitor (5z)-7-oxozeaenol. Activity of TAK1 in 3LL cells was markedly increased by PolyI:C in the presence of macrophages. 3LL cells expressing Eevee-TAK1 were implanted into mice and observed through imaging window by two-photon excitation microscopy. During the growth of tumor, the 3LL cells at the periphery of the tumor showed higher TAK1 activity than the 3LL cells located at the center of the tumor, suggesting that cells at the periphery of the tumor mass were under stronger stress. Injection of PolyI:C, which is known to induce regression of the implanted tumors, induced marked and homogenous TAK1 activation within the tumor tissues. The effect of PolyI:C faded within 4 days. These observations suggest that Eevee-TAK1 is a versatile tool to monitor cellular stress in cancer tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970831 | PMC |
http://dx.doi.org/10.1111/cas.12923 | DOI Listing |
Int J Pharm
July 2024
College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China. Electronic address:
Biochem Biophys Res Commun
July 2024
Department of Charged Particle Therapy Research, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan. Electronic address:
The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors.
View Article and Find Full Text PDFImmunology
May 2024
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
Myeloid-derived suppressor cells (MDSCs) increase in number and gain immunosuppressive functions in tumours and many other pathological conditions. MDSCs are characterized by their strong T-cell immunosuppressive capacity. The effects that MDSCs may have on B cells, especially within the tumour microenvironment, are less well understood.
View Article and Find Full Text PDFInt J Pharm
February 2024
Université Paris Cité, CNRS, Inserm, UTCBS, F-75006, Paris, France. Electronic address:
Lung cancer is a highly vascularized tumor for which a combination between an antitumor agent, cisplatin, and an antiangiogenic molecule, fisetin, appears a promising therapeutic approach. In order to deliver both chemotherapies within the tumor, to enhance fisetin solubility and decrease cisplatin toxicity, an encapsulation of both drugs into liposomes was developed. Purification and freeze-drying protocols were optimized to improve both the encapsulation and liposome storage.
View Article and Find Full Text PDFMed Oncol
August 2023
Department of Geriatrics, The Third Affiliated Hospital of Suzhou University, Changzhou, 213003, Jiangsu, China.
PD-L1 is expressed on antigen-presenting cells and tumor cells, thus allows tumor cells to escape immune surveillance. Moreover, targeting PD-L1 was also recommended and selected as important immune checkpoint inhibitors (ICIs) strategy in the treatment of advanced cancers due to the safety and activity. However, the detailed alteration of tumor microenvironment (TME) upon anti-PD-L1 therapy in lung cancer tumor model still needs to be resolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!