The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773229 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149632 | PLOS |
PLoS One
July 2016
Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China.
The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!