Graphene is a material of unmatched properties and eminent potential in disciplines ranging from physics, to chemistry, to biology. Its advancement to applications with a specific function requires rational design and fine tuning of its properties, and covalent introduction of various substituents answers this requirement. We challenged the obstacle of non-trivial and harsh procedures for covalent functionalization of pristine graphene and developed a protocol for mild nucleophilic introduction of organic groups in the gas phase. The painstaking analysis problem of monolayered materials was addressed by using surface-enhanced Raman spectroscopy, which allowed us to monitor and characterize in detail the surface composition. These deliverables provide a toolbox for reactivity of fluorinated graphene under mild reaction conditions, providing structural freedom of the species to-be-grafted to the single-layer graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201504689DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman spectroscopy
8
graphene
5
covalent reactions
4
reactions chemical
4
chemical vapor
4
vapor deposition
4
deposition grown
4
grown graphene
4
graphene studied
4

Similar Publications

Spontaneous Catalytic Reaction of a Surfactant in the Interfacial Microenvironment of Colloidal Gold Nanoparticles.

J Am Chem Soc

January 2025

State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

Kinetically Tailored Chemical Vapor Deposition Approach for Synthesizing High-Quality Large-Area Non-Layered 2D Materials.

Small

January 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!