Purpose: The aim of this study was to explore the molecular mechanism of fracture healing in osteoporotic mice.

Methods: The gene expression profiles of callus tissues of osteoporotic mice and controls were obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) and their related biological function and pathways were investigated. In addition, the protein-protein interaction (PPI) network was constructed for DEG encoding proteins and the differentially expressed transcriptional factor was screened.

Results: There were 275 up-regulated genes and 347 down-regulated genes. The collagen metabolic process biological function was significantly enriched by down-regulated genes. Extracellular matrix (ECM)-receptor interaction was a significant pathway that was enriched by differentially expressed genes. In PPI (protein-protein interaction) network, Pcna was the significant node with highest connective degrees. Other hub nodes, such as Ccnb2 and Rrm2, were closely associated with the p53 signaling pathway. Tal1 and Smad6 were found to be differentially expressed transcription factors.

Conclusion: The dysregulated collagen metabolic process, ECM-receptor interaction and p53 signaling pathway may be responsible for impaired fracture healing of osteoporotic mice. The hub nodes (such as Ccnb2 and Rrm2) and differentially expressed TFs (such as Tal1 and Smad6) play a critical role in bone remodeling of osteoporotic individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1756-185X.12840DOI Listing

Publication Analysis

Top Keywords

differentially expressed
20
gene expression
12
callus tissues
8
tissues osteoporotic
8
fracture healing
8
healing osteoporotic
8
osteoporotic mice
8
expressed genes
8
biological function
8
protein-protein interaction
8

Similar Publications

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.

View Article and Find Full Text PDF

Objectives: The genetic underpinnings of RA remain partially elucidated, motivating our exploration of copy number variations (CNV) and rare variations in the pathogenesis of RA.

Methods: We conducted an integrated analysis of the genome-wide landscape of CNV and exome-wide rare variation associations with RA in the UK Biobank. To strengthen our findings, we corroborated the results by the differentially expressed genes identified from gene expression profiles of synovial tissue of RA patients and health controls.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.

View Article and Find Full Text PDF

Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous.

View Article and Find Full Text PDF

Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!