Purpose: The aim of this study was to explore the molecular mechanism of fracture healing in osteoporotic mice.
Methods: The gene expression profiles of callus tissues of osteoporotic mice and controls were obtained from Gene Expression Omnibus database. The differentially expressed genes (DEGs) and their related biological function and pathways were investigated. In addition, the protein-protein interaction (PPI) network was constructed for DEG encoding proteins and the differentially expressed transcriptional factor was screened.
Results: There were 275 up-regulated genes and 347 down-regulated genes. The collagen metabolic process biological function was significantly enriched by down-regulated genes. Extracellular matrix (ECM)-receptor interaction was a significant pathway that was enriched by differentially expressed genes. In PPI (protein-protein interaction) network, Pcna was the significant node with highest connective degrees. Other hub nodes, such as Ccnb2 and Rrm2, were closely associated with the p53 signaling pathway. Tal1 and Smad6 were found to be differentially expressed transcription factors.
Conclusion: The dysregulated collagen metabolic process, ECM-receptor interaction and p53 signaling pathway may be responsible for impaired fracture healing of osteoporotic mice. The hub nodes (such as Ccnb2 and Rrm2) and differentially expressed TFs (such as Tal1 and Smad6) play a critical role in bone remodeling of osteoporotic individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1756-185X.12840 | DOI Listing |
PLoS One
March 2025
Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China.
Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.
Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.
Clin Exp Rheumatol
March 2025
Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Objectives: The genetic underpinnings of RA remain partially elucidated, motivating our exploration of copy number variations (CNV) and rare variations in the pathogenesis of RA.
Methods: We conducted an integrated analysis of the genome-wide landscape of CNV and exome-wide rare variation associations with RA in the UK Biobank. To strengthen our findings, we corroborated the results by the differentially expressed genes identified from gene expression profiles of synovial tissue of RA patients and health controls.
Geroscience
March 2025
Department of Medicine, College of Human Medicine, Michigan State University, 1355 Bogue St, East Lansing, MI, 48824, USA.
Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China.
Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous.
View Article and Find Full Text PDFMycorrhiza
March 2025
INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France.
Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!