Differences in resource use or in tolerances to abiotic conditions are often invoked as potential mechanisms underlying the sympatric distribution of cryptic species. Additionally, the microbiome can provide physiological adaptations of the host to environmental conditions. We determined the intra- and interspecific variability of the microbiomes of three cryptic nematode species of the Litoditis marina species complex that co-occur, but show differences in abiotic tolerances. Roche 454 pyrosequencing of the microbial 16S rRNA gene revealed distinct bacterial communities characterized by a substantial diversity (85-513 OTUs) and many rare OTUs. The core microbiome of each species contained only very few OTUs (2-6), and four OTUs were identified as potentially generating tolerance to abiotic conditions. A controlled experiment in which nematodes from two cryptic species (Pm1 and Pm3) were fed with either an E. coli suspension or a bacterial mix was performed, and the 16S rRNA gene was sequenced using the MiSeq technology. OTU richness was 10-fold higher compared to the 454 data set and ranged between 1118 and 7864. This experiment confirmed the existence of species-specific microbiomes, a core microbiome with few OTUs, and high interindividual variability. The offered food source affected the bacterial community and illustrated different feeding behaviour between the cryptic species, with Pm3 exhibiting a higher degree of selective feeding than Pm1. Morphologically similar species belonging to the same feeding guild (bacterivores) can thus have substantial differences in their associated microbiomes and feeding strategy, which in turn may have important ramifications for biodiversity-ecosystem functioning relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.13597DOI Listing

Publication Analysis

Top Keywords

cryptic species
16
species
8
species litoditis
8
litoditis marina
8
abiotic conditions
8
16s rrna
8
rrna gene
8
core microbiome
8
otus
5
coexisting cryptic
4

Similar Publications

The filamentous red algal genus Bryocladia was recently deeply revised based on molecular and morphological data. However, data from the Southwestern Atlantic Ocean are scarce. Here, we provide a phylogenetic study of Bryocladia representatives from the Brazilian coast with new additions to the genus.

View Article and Find Full Text PDF

The Indo-Burma biodiversity hotspot for ferns: Updated phylogeny, hidden diversity, and biogeography of the java fern genus (Polypodiaceae).

Plant Divers

November 2024

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.

The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, , .

View Article and Find Full Text PDF

Unveiling Cryptic Diversity in Hylomys: A Commentary on Recent Taxonomic Revisions.

Integr Zool

January 2025

State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China.

The genus Hylomys now comprises seven species instead of two; the Hylomys species in China should be classified as Hylomys peguensis.

View Article and Find Full Text PDF

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

Parasitic plants are a diverse and unique polyphyletic assemblage of flowering plants that survive by obtaining resources via direct vascular connections to a host plant. Ecologically important in their native ecosystems, these typically cryptic plants remain understudied and fundamental knowledge of the biology, ecology, and evolution of most species is lacking. This gap limits our understanding of ecosystems and conservation management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!