Mesenchymal stem cell (MSC), a widely used adult stem cell candidate for regenerative medicine, has been shown to exert some of its therapeutic effects through the secretion of extracellular vesicles (EVs). These homogenously sized EVs of 100-150 ηm exhibited many exosome-like biophysical and biochemical properties and carry both proteins and RNAs. Recently, exosome-associated proteins in this MSC EV preparation were found to segregate primarily to those EVs that bind cholera toxin B chain (CTB), a GM1 ganglioside-specific ligand, and pulse-chase experiments demonstrated that these EVs have endosomal origin and carried many of the exosome-associated markers. Here, we report that only a fraction of the MSC EV proteome was found in CTB-bound EVs. Using Annexin V (AV) and Shiga toxin B subunit (ST) with affinities for phosphatidylserine and globotriaosylceramide, respectively, AV- and a ST-binding EV were identified. CTB-, AV- and ST-binding EVs all carried actin. However, the AV-binding EVs carried low or undetectable levels of the exosome-associated proteins. Only the ST-binding EVs carried RNA and EDA-containing fibronectin. Proteins in AV-binding EVs were also different from those released by apoptotic MSCs. CTB- and AV-binding activities were localized to the plasma membrane and cytoplasm of MSCs, while ST-binding activity was localized to the nucleus. Together, this study demonstrates that cells secrete many types of EVs. Specifically, MSCs secrete at least 3 types. They can be differentially isolated based on their affinities for membrane lipid-binding ligands. As the subcellular sites of the binding activities of these ligands and cargo load are different for each EV type, they are likely to have a different biogenesis pathway and possibly different functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770866 | PMC |
http://dx.doi.org/10.3402/jev.v5.29828 | DOI Listing |
Clin Chim Acta
January 2025
Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:
Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.
View Article and Find Full Text PDFLab Chip
January 2025
The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, "Victor Babeș" University of Medicine and Pharmacy, 300041 Timisoara, Romania.
Pregnancy complications associated with thrombophilia represent significant risks for maternal and fetal health, leading to adverse outcomes such as pre-eclampsia, recurrent pregnancy loss, and intra-uterine growth restriction (IUGR). They are caused by disruptions in key physiological processes, including the coagulation cascade, trophoblast invasion, angiogenesis, and immune control. Recent advancements in epigenetics have revealed that non-coding RNAs, especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and extracellular vesicles (EVs) carrying these RNAs, play crucial roles in the regulation of these biological processes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain.
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain.
View Article and Find Full Text PDFBiomedicines
December 2024
Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy.
Background/objectives: Standard chemotherapy is generally considered the best approach to treat many solid cancers, even accounting for severe side effects. Therefore, the development of a drug delivery system for chemotherapeutic administration could significantly improve standard chemotherapy by maintaining the cytotoxic effects of the drugs while decreasing the inherent side effects of the treatment. The aim of our study is the optimization of a loading strategy that conjugates the use of extracellular vesicles (EVs) as drug delivery carriers, by preserving their integrity, with the loading efficiency and activity maintenance of chemotherapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!