Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon.

Environ Sci Technol

National Exposure Research Laboratory, Exposure Methods & Measurement Division, U.S. Environmental Protection Agency , Athens, Georgia 30605, United States.

Published: April 2016

Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applications. In this study, we examined the phototransformation of carboxylated SWCNTs and associated amorphous carbon impurities in the presence or absence of H2O2 under simulated sunlight conditions. We found that while carboxylated SWCNTs were rather unreactive with respect to direct solar photolysis, they photoreacted in the presence of H2O2, forming CO2 and strongly aggregated SWCNT products that precipitated. Photoreaction caused SWCNTs to lose oxygen-containing functionalities, and interestingly, the resulting photoproducts had spectral characteristics similar to those of parent carboxylated SWCNTs whose amorphous carbon was removed by base washing. These results indicated that photoreaction of the amorphous carbon was likely involved. The removal of amorphous carbon after indirect photoreaction was confirmed with thermogravimetric analysis (TGA). Further studies using carboxylated SWCNTs with and without base washing indicate that amorphous carbon reduced the extent of aggregation caused by photoreaction. The second-order rate constant for carboxylated SWCNTs reacting with (•)OH was estimated to be in the range of 1.7-3.8 × 10(9) MC(-1) s(-1). The modeled phototransformation half-lives fall in the range of 2.8-280 days in typical sunlit freshwaters. Our study indicates that photosensitized reactions involving (•)OH may be a transformation and removal pathway of functionalized SWCNTs in the aquatic environment, and that the residual amorphous carbon associated with SWCNTs plays a role in SWCNT stabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b04727DOI Listing

Publication Analysis

Top Keywords

amorphous carbon
28
carboxylated swcnts
20
swcnts
10
carbon
9
single-walled carbon
8
carbon nanotubes
8
functionalized swcnts
8
base washing
8
amorphous
7
carboxylated
5

Similar Publications

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.

View Article and Find Full Text PDF

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst.

Nat Commun

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Renewable energy-driven electrocatalytic nitrate reduction reaction presents a low-carbon and sustainable route for ammonia synthesis under mild conditions. Yet, the practical application of this process is currently hindered by unsatisfactory electrocatalytic activity and long-term stability. Herein we achieve high-rate ammonia electrosynthesis using a stable amorphous/crystalline dual-phase Cu catalyst.

View Article and Find Full Text PDF

The hydrogenation of carbon dioxide into profitable chemicals is a viable path toward achieving the objective of carbon neutrality. However, the typical approach for hydrogenation of CO heavily relies on thermally driven catalysis at high temperatures, which is not aligned with the goals of carbon neutrality. Thus, there is a critical need to explore new catalytic methods for the high-efficiency conversion of CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!