Simple composite films consisting of a polymer blended with organic emitters have the potential for broad-band "white" light emission that can be used for general lighting applications. In the present work, a simple mixture of 3-hydroxyisoquinoline (HIQ) with Nile Red (NR) in a polymeric matrix of polyvinyl alcohol (PVA) is used to generate white light through a non-radiative excitation energy transfer (NREET) mechanism. NREET between HIQ and NR doped in PVA films is investigated using a combination of steady state and time resolved fluorescence spectroscopic methods. It is observed that NR has very weak fluorescence in the PVA film upon excitation at 400 nm, but upon mixing NR with HIQ, sensitized emission of NR is observed with decreased emission of HIQ. The behavior of the sensitized emission of NR is consistent with Förster resonance energy transfer (FRET) between the donor HIQ and acceptor NR. By adjusting the relative fractions of HIQ and NR in the films, the extent of FRET could be regulated and the overall film emission color could be manipulated to enable overall "white" (CIE color coordinates 0.34, 0.38) emission. The films showed excellent photostability with 405 nm diode illumination, along with mechanical flexibility, suggesting good potential utility as a down converting element for lighting applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6pp00005c | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
Extended ligand conjugation enhances luminescent thermometry in [Dy(diketone)(bipyrimidine)] SMMs, as substantiated by crystallographic, photoluminescence, and lifetime decay analyses. This conjugation facilitates rare direct energy transfer from the ligands' singlet state to the metal centers, as evidenced by the nanosecond excited-state lifetime of Dy(III).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.
Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!