Some autistic individuals exhibit abnormal development of the caudate nucleus and associative cortical areas, suggesting potential dysfunction of cortico-basal ganglia (BG) circuits. Using optogenetic and electrophysiological approaches in mice, we identified a narrow postnatal period that is characterized by extensive glutamatergic synaptogenesis in striatal spiny projection neurons (SPNs) and a concomitant increase in corticostriatal circuit activity. SPNs during early development have high intrinsic excitability and respond strongly to cortical afferents despite sparse excitatory inputs. As a result, striatum and corticostriatal connectivity are highly sensitive to acute and chronic changes in cortical activity, suggesting that early imbalances in cortical function alter BG development. Indeed, a mouse model of autism with deletions in Shank3 (Shank3B(-/-)) shows early cortical hyperactivity, which triggers increased SPN excitatory synapse and corticostriatal hyperconnectivity. These results indicate that there is a tight functional coupling between cortex and striatum during early postnatal development and suggest a potential common circuit dysfunction that is caused by cortical hyperactivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846490 | PMC |
http://dx.doi.org/10.1038/nn.4260 | DOI Listing |
Sci Transl Med
January 2025
Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA.
Mutations in lipid regulator genes are a frequent cause of autism spectrum disorder, including those regulating phosphatidylinositol (PI) and phosphoinositide 3-kinase signaling. encodes a key acyltransferase in PI synthesis and is mutated in an autism-related condition with neurodevelopmental delay and epilepsy. Using liquid chromatography-tandem mass spectrometry, we analyzed the PI-associated glycerolipidome in mice and humans during neurodevelopment and found dynamic regulation at times corresponding to neural apoptosis in the brains of knockout mice.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
Individuals with ADHD struggle with time perception. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are two distinct cortical areas that are involved in the psychopathology of ADHD, including time perception. In the present study, we aimed to explore if modulation of the excitability of these areas with non-invasive brain stimulation alters time perception in ADHD.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Federal State Budgetary Educational Institution, Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia.
Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.
View Article and Find Full Text PDFNeuroSci
December 2024
Audiology Program, School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1S 5L5, Canada.
At the cortical level, the central auditory neural system (CANS) includes primary and secondary areas. So far, much research has focused on recording fronto-central auditory evoked potentials/responses (P1-N1-P2), originating mainly from the primary auditory areas, to explore the neural processing in the auditory cortex. However, less is known about the secondary auditory areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!