The dynamic spreading of nanofluids on solid surfaces - Role of the nanofilm structural disjoining pressure.

J Colloid Interface Sci

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States. Electronic address:

Published: May 2016

Nanofluids comprising nanoparticle suspensions in liquids have significant industrial applications. Prior work performed in our laboratory on the spreading of an aqueous film containing nanoparticles displacing an oil droplet has clearly revealed that the structural disjoining pressure arises due to the layering of the nanoparticles normal to the confining plane of the film with the wedge profile. The pressure drives the nanofluid in the wedge film and the nanofluid spreads. We observed two distinct contact lines: the inner contact line, where the structural disjoining pressure dominates the Laplace capillary pressure, and the outer contact line, given by the Laplace equation prediction extrapolated to the solid substrate where the structural disjoining pressure contribution is negligible. We report here our results of the effects of several parameters, such as the nanoparticle concentration, liquid salinity, temperature, and the substrate contact angle, on the motion of the two contact lines and their effects on the detachment of the oil droplet. We also studied the equilibrated and non-equilibrated oil/nanofluid phases, the time of adhesion of the oil droplet on the solid substrate and the drying time of the substrate. We employed the frictional model to predict the outer contact line velocity and our previous theoretical model (based on the structural disjoining pressure) to predict the inner contact line velocity. The theoretical predictions agreed quite well with the experimentally measured values of the velocities. Our experimental results showed that the motion of the inner contact line was accelerated by the increase in the nanoparticle concentration, temperature, and hydrophilicity of the substrate for the pre-equilibrated oil/nanofluid phases, which resulted in the faster detachment of the oil droplet. The speed of the two contact lines decreased upon the increase in the drying time of the substrate and the oil adhesion time on the substrate. The present results provide new insights into the complex spreading behavior of nanofluids on solid substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.02.044DOI Listing

Publication Analysis

Top Keywords

structural disjoining
20
disjoining pressure
20
oil droplet
16
contact lines
12
inner contact
12
time substrate
12
contact
9
nanofluids solid
8
outer contact
8
solid substrate
8

Similar Publications

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Flowerlike Spreading of Micellar Films during Emulsion Drop Evaporation.

Phys Rev Lett

October 2024

School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, USA.

We investigated the film spreading during the evaporation of submillimeter oil-in-water emulsion droplets on a solid surface, and observed a novel phenomenon where the film follows a two-layer spreading. In combination with the instability at the film front, the spreading front acquires a flowerlike pattern. The emergence of the two-layer structure is attributed to micelles within the oil film that yield an oscillating disjoining pressure.

View Article and Find Full Text PDF

Electrostatic interactions between soft nanoparticles beyond the Derjaguin approximation: Effects of finite size of ions and charges, dielectric decrement and ion correlations.

J Colloid Interface Sci

January 2025

Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR7360, 54000 Nancy, France. Electronic address:

Hypothesis: Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation.

View Article and Find Full Text PDF

Elucidating the mechanical forces between two solid surfaces immersed in a communal liquid environment is crucial for understanding and controlling adhesion, friction, and electrochemistry in many technologies. Although traditional models can adequately describe long-range mechanical forces, they require substantial modifications in the nanometric region where electronic effects become important. A hybrid quantum-classical model is employed herein to investigate the separation-dependent disjoining pressure between two metal surfaces immersed in an electrolyte solution under potential control.

View Article and Find Full Text PDF

Toward Modeling the Structure of Electrolytes at Charged Mineral Interfaces Using Classical Density Functional Theory.

J Phys Chem B

April 2024

Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States.

The organization of water molecules and ions between charged mineral surfaces determines the stability of colloidal suspensions and the strength of phase-separated particulate gels. In this article, we assemble a density functional that measures the free energy due to the interaction of water molecules and ions in electric double layers. The model accounts for the finite size of the particles using fundamental measure theory, hydrogen-bonding between water molecules using Wertheim's statistical association theory, long-range dispersion interactions using Barker and Henderson's high-temperature expansion, electrostatic correlations using a functionalized mean-spherical approximation, and Coulomb forces through the Poisson equation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!