Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes.

J Colloid Interface Sci

Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop, Turkey. Electronic address:

Published: May 2016

In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized multi-walled carbon nanotubes (MWCNs) sheets was prepared for the determination of simazine (SIM). The developed surfaces were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. SIM imprinted GCE was prepared via electropolymerization process of 100mM pyrrole as monomer in the presence of 0.1M acetate buffer (pH 4.0) containing 25mM SIM. The linearity range and the detection limit of the developed method were calculated as 1.0×10(-10)-5.0×10(-9)M and 2.0×10(-11)M, respectively. In addition, the voltammetric sensor was applied to wastewater samples. The stability and reproducibility of the voltammetric sensor were also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.02.036DOI Listing

Publication Analysis

Top Keywords

voltammetric sensor
12
platinum nanoparticles
8
carbon nanotubes
8
electron microscopy
8
sensitive analysis
4
analysis simazine
4
simazine based
4
based platinum
4
nanoparticles polyoxometalate/multi-walled
4
polyoxometalate/multi-walled carbon
4

Similar Publications

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

The WHO has classified Helicobacter pylori as a group 1 carcinogen for stomach cancer since early 1994. However, despite the high prevalence of Helicobacter pylori infection, only about 3% of infected people eventually develop gastric cancer.Biomolecular detections of Helicobacter pylori(HP) were compared using specially modified sensors and fluorine immobilized on a carbon nanotube (HFCNT) electrode, which yielded sensitive results.

View Article and Find Full Text PDF

Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!