Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Both ion-specific interaction and carbon spacer length have strong effects on the properties of polyzwitterions. In this work, we have investigated the anion specificity of poly(sulfobetaine methacrylamide) (PSBMAm) brushes with different carbon spacer lengths. The effectiveness of anions to enhance the hydration of the PSBMAm brushes increases from kosmotropic to chaotropic anions. The interactions between the anions and the PSBMAm brushes are strongly influenced by carbon spacer length because the strength of inter/intrachain association of the PSBMAm brushes decreases with increasing carbon spacer length. The inter/intrachain association of the PSBMAm brushes with a longer carbon spacer is easier to break by the external anions in the high salt concentration regime. On the other hand, a longer carbon spacer is more favorable for the zwitterionic groups to form cyclic intramolecular structures. As a result, the addition of anions can more effectively enhance the hydration of the PSBMAm brushes with a medium-length carbon spacer compared with that of the PSBMAm brushes with a either shorter or longer carbon spacer in the low salt concentration regime, determined by the balance between the inter/intrachain association and the formation of cyclic intramolecular structures. Our study also demonstrates that both anion identity and carbon spacer length can be used to control protein adsorption on the surface of the PSBMAm brushes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b00293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!