Disruption of Glut1 in Hematopoietic Stem Cells Prevents Myelopoiesis and Enhanced Glucose Flux in Atheromatous Plaques of ApoE(-/-) Mice.

Circ Res

From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.).

Published: April 2016

Rationale: Inflamed atherosclerotic plaques can be visualized by noninvasive positron emission and computed tomographic imaging with (18)F-fluorodeoxyglucose, a glucose analog, but the underlying mechanisms are poorly understood.

Objective: Here, we directly investigated the role of Glut1-mediated glucose uptake in apolipoprotein E-deficient (ApoE(-/-)) mouse model of atherosclerosis.

Methods And Results: We first showed that the enhanced glycolytic flux in atheromatous plaques of ApoE(-/-) mice was associated with the enhanced metabolic activity of hematopoietic stem and multipotential progenitor cells and higher Glut1 expression in these cells. Mechanistically, the regulation of Glut1 in ApoE(-/-) hematopoietic stem and multipotential progenitor cells was not because of alterations in hypoxia-inducible factor 1α signaling or the oxygenation status of the bone marrow but was the consequence of the activation of the common β subunit of the granulocyte-macrophage colony-stimulating factor/interleukin-3 receptor driving glycolytic substrate utilization by mitochondria. By transplanting bone marrow from WT, Glut1(+/-), ApoE(-/-), and ApoE(-/-)Glut1(+/-) mice into hypercholesterolemic ApoE-deficient mice, we found that Glut1 deficiency reversed ApoE(-/-) hematopoietic stem and multipotential progenitor cell proliferation and expansion, which prevented the myelopoiesis and accelerated atherosclerosis of ApoE(-/-) mice transplanted with ApoE(-/-) bone marrow and resulted in reduced glucose uptake in the spleen and aortic arch of these mice.

Conclusions: We identified that Glut1 connects the enhanced glucose uptake in atheromatous plaques of ApoE(-/-) mice with their myelopoiesis through regulation of hematopoietic stem and multipotential progenitor cell maintenance and myelomonocytic fate and suggests Glut1 as potential drug target for atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824305PMC
http://dx.doi.org/10.1161/CIRCRESAHA.115.307599DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
20
apoe-/- mice
16
stem multipotential
16
multipotential progenitor
16
atheromatous plaques
12
plaques apoe-/-
12
glucose uptake
12
bone marrow
12
apoe-/-
9
enhanced glucose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!