Identification of Commensal Species Positively Correlated with Early Stress Responses to a Compromised Mucus Barrier.

Inflamm Bowel Dis

*Top Institute Food and Nutrition, Wageningen, the Netherlands; †Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research Center, Wageningen, the Netherlands; ‡Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands; §Department of Pediatrics, Academic Medical Center, Amsterdam, the Netherlands; ‖Laboratory of Microbiology, Wageningen University and Research Center, Wageningen, the Netherlands; ¶Division of Human Nutrition, Wageningen University and Research Center, Wageningen, the Netherlands; **NIZO Food Research, Ede, the Netherlands; ††University Medical Center of Groningen, Groningen, the Netherlands; and ‡‡Nutricia Research, Utrecht, the Netherlands.

Published: April 2016

Background: Our aims were (1) to correlate changes in the microbiota to intestinal gene expression before and during the development of colitis in Muc2 mice and (2) to investigate whether the heterozygote Muc2 mouse would reveal host markers of gut barrier stress.

Methods: Colon histology, transcriptomics, and microbiota profiling of faecal samples was performed on wild type, Muc2, and Muc2 mice at 2, 4, and 8 weeks of age.

Results: Muc2 mice develop colitis in proximal colon after weaning, resulting in inflammatory and adaptive immune responses, and expression of genes associated with human inflammatory bowel disease. Muc2 mice do not develop colitis, but produce a thinner mucus layer. The transcriptome of Muc2 mice revealed differential expression of genes participating in mucosal stress responses and exacerbation of a transient inflammatory state around the time of weaning. Young wild type and Muc2 mice have a more constrained group of bacteria as compared with the Muc2 mice, but at 8 weeks the microbiota composition is more similar in all mice. At all ages, microbiota composition discriminated the groups of mice according to their genotype. Specific bacterial clusters correlated with altered gene expression responses to stress and bacteria, before colitis development, including colitogenic members of the genus Bacteroides.

Conclusions: The abundance of Bacteroides pathobionts increased before histological signs of pathology suggesting they may play a role in triggering the development of colitis. The Muc2 mouse produces a thinner mucus layer and can be used to study mucus barrier stress in the absence of colitis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MIB.0000000000000688DOI Listing

Publication Analysis

Top Keywords

muc2 mice
28
muc2
10
mice
9
stress responses
8
mucus barrier
8
gene expression
8
development colitis
8
colitis muc2
8
muc2 mouse
8
wild type
8

Similar Publications

In the development of inflammatory bowel disease (IBD), peritoneal macrophages contribute to the resident intestinal macrophage pool. Previous studies have demonstrated that oral administration of L-fucose exerts an immunomodulatory effect and repolarizes the peritoneal macrophages in vivo in mice. In this study, we analyzed the phenotype and metabolic profile of the peritoneal macrophages from mice, as well as the effect of L-fucose on the metabolic and morphological characteristics of these macrophages in vitro.

View Article and Find Full Text PDF

Amelioration of LPS-Induced Jejunum Injury and Mucus Barrier Damage in Mice by IgY Embedded in W/O/W Emulsion.

Foods

December 2024

Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China.

Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier.

View Article and Find Full Text PDF

Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis.

J Agric Food Chem

January 2025

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.

View Article and Find Full Text PDF

Background: Evaluate the impact of Spondias mombin L. juice (SM), alone and in combination with Lactobacillus acidophilus, in an experimental model of intestinal mucositis.

Methods: Swiss mice were orally administered with saline, SM, or SM combined with L.

View Article and Find Full Text PDF

This study aimed to investigate the protective effects of Lycium barbarum polysaccharide (LBP) on digestive function and intestinal barrier integrity in septic mice, and to explore its underlying mechanisms. A total of 70 healthy male BALB/C mice were randomly assigned into five groups: blank control group (BG, n = 12), control group (CG, n = 12), low-dose group (LDG, n = 12, 200 mg/kg), medium-dose group (MDG, n = 12, 400 mg/kg), and high-dose group (HDG, n = 12, 800 mg/kg). A sepsis model was established by cecal ligation and puncture, followed by treatment with different doses of LBP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!